Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta.
نویسندگان
چکیده
Photosynthesis is regulated by environmental factors as well as endogenous sugar signals. Whereas light-driven sugar biosynthesis is essential for terrestrial organisms, as well as belowground microflora, whether and how soil symbionts regulate photosynthesis has yet to be reported. Here, we show that the plant growth-promoting soil bacterium Bacillus subtilis GB03 augments photosynthetic capacity by increasing photosynthetic efficiency and chlorophyll content in Arabidopsis. Mechanistic studies reveal an elevation of sugar accumulation as well as the suppression of classic glucose signaling responses, including hypocotyl elongation and seed germination, with exposure to GB03. Compared with wild-type plants, two Arabidopsis mutants defective in hexokinase-dependent sugar signaling exhibit increased photosynthetic capacity, which is not further enhanced with GB03 exposure. Overlap in sugar/ABA sensing is observed in GB03-exposed plants, with a reduction of ABA-biosynthetic transcripts as well as downstream metabolite levels in leaves. Moreover, exogenous ABA abrogates GB03-triggered increases in photosynthetic efficiency and chlorophyll content. These results demonstrate that certain rhizobacteria elevate photosynthesis through the modulation of endogenous sugar/ABA signaling, and establish a regulatory role for soil symbionts in plant acquisition of energy.
منابع مشابه
ASR1 mediates glucose-hormone cross talk by affecting sugar trafficking in tobacco plants.
Asr (for ABA, stress, ripening) genes are exclusively found in the genomes of higher plants, and the encoded proteins have been found localized both to the nucleus and cytoplasm. However, before the mechanisms underlying the activity of ASR proteins can be determined, the role of these proteins in planta should be deciphered. Results from this study suggest that ASR is positioned within the sig...
متن کاملPseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signalling pathway to cause disease.
We have found that a major target for effectors secreted by Pseudomonas syringae is the abscisic acid (ABA) signalling pathway. Microarray data identified a prominent group of effector-induced genes that were associated with ABA biosynthesis and also responses to this plant hormone. Genes upregulated by effector delivery share a 42% overlap with ABA-responsive genes and are also components of n...
متن کاملEnvironment sensing in spring-dispersed seeds of a winter annual Arabidopsis influences the regulation of dormancy to align germination potential with seasonal changes
Seed dormancy cycling plays a crucial role in the lifecycle timing of many plants. Little is known of how the seeds respond to the soil seed bank environment following dispersal in spring into the short-term seed bank before seedling emergence in autumn. Seeds of the winter annual Arabidopsis ecotype Cvi were buried in field soils in spring and recovered monthly until autumn and their molecular...
متن کاملDrought response transcriptomes are altered in poplar with reduced tonoplast sucrose transporter expression
Transgenic Populus tremula x alba (717-1B4) plants with reduced expression of a tonoplast sucrose efflux transporter, PtaSUT4, exhibit reduced shoot growth compared to wild type (WT) under sustained mild drought. The present study was undertaken to determine whether SUT4-RNAi directly or indirectly altered poplar predisposition and/or response to changes in soil water availability. While sucros...
متن کاملUDP-glucosyltransferase71c5, a major glucosyltransferase, mediates abscisic acid homeostasis in Arabidopsis.
Abscisic acid (ABA) plays a key role in plant growth and development. The effect of ABA in plants mainly depends on its concentration, which is determined by a balance between biosynthesis and catabolism of ABA. In this study, we characterize a unique UDP-glucosyltransferase (UGT), UGT71C5, which plays an important role in ABA homeostasis by glucosylating ABA to abscisic acid -: glucose ester (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant journal : for cell and molecular biology
دوره 56 2 شماره
صفحات -
تاریخ انتشار 2008